Dear Sir/Madam,

Please find the enclosed galley proofs of your article. Below are instructions on how to help facilitate the timely publication of your article in ANTICANCER RESEARCH.

1. Please read, correct and return the proofs to the Editorial Office within 2-3 working days.
2. Proofs may be Faxed, e-mailed or returned by the fastest mail available. Delays in the return of your proofs may necessitate transferring your paper to a later issue of the journal.
3. While reviewing your manuscript, please be on the lookout for unintended changes in the meaning of the text through editorial corrections or language improvements.
4. With the exception of the above, corrections should be limited to typographical errors.
5. To promote our rapid publication policy, figures are not sent to authors unless alterations have been made through the editing process.
6. **Should you require extra reprints of your article, please order them now.** Reprints ordered at this time will reach you considerably faster than if ordered after the publication of your article.
7. For further information on your article (publication date, volume, page numbers etc.), please contact the Editorial Office by Fax: 0030-22950-53389, e-mail: journals@iiar-anticancer.org, or by sending a letter to the Editorial Office: International Institute of Anticancer Research, 1st km Kapandritiou - Kalamou Rd., Kapandriti, P.O.Box 22, Attiki 19014, Greece.
8. In all correspondence with us please provide your complete postal address, telephone/fax numbers and e-mail address.

Thank you for taking the time to study these guidelines.

Yours,

J.G. Delinassios
Managing Editor

Enclosures
The lymphatic vascular system is necessary for the return of extravasated interstitial fluid and macromolecules to the blood circulation, for immune defense, and for the uptake of dietary fats. Impaired functioning of lymphatic vessels results in lymphedema, whereas tumor-associated lymphangiogenesis may contribute to the spread of cancer cells from solid tumors. Recent studies have identified lymphatic molecular markers and growth factors necessary for lymphangiogenesis. In particular, lymphatic endothelial receptor tyrosine kinase VEGFR-3 and its ligands VEGF-C and VEGF-D are major players in promoting lymphatic vascular growth both during development and in pathological conditions. Lymphatic vessels play a crucial role in a variety of human cancers, since invasion of lymphatic vessels by tumor cells and subsequent development of lymph node metastases significantly influence prognosis of cancer patients and therefore represent an integral part of tumor staging. Recent evidence on the important influence of lymphangiogenic growth factors on intralymphatic cancer growth and metastasis raises hopes that lymphatic vessels and factors inducing their growth could serve as additional targets for tumor therapy. Nevertheless, in contrast to blood vessel angiogenesis, the mechanisms of new lymphatic vessel formation in human cancers, i.e. lymphangiogenesis, are still relatively unclear. In the framework of possible anti-lymphangiogenic therapeutic strategies, this review focuses on the mechanisms of lymphangiogenesis in general, and especially on the role of lymphatic vessels in the process of metastasis.

The lymphatic system transports interstitial fluid and macromolecules from tissue back to the blood circulation and plays an important role in the immune response by directing the traffic of lymphocytes and antigen-presenting cells (1). In the periphery, antigen-presenting cells and lymphocytes enter the capillaries and migrate through the lymphatic system to the lymph nodes to elicit acquired immune response to the body. In the small intestine, the lymphatics play a special role in the process of fat-absorption.

This extensive drainage network is lined by a single, thin, non-fenestrated lymphatic endothelial cell (LECs) layer (2). An incomplete basement membrane is characteristic, and the lymphatic endothelial cells are anchored to the extracellular matrix through elastic fibres, which keep the vessels open allowing for changes in interstitial pressure (3).

Two theories about the development of the lymphatic system were proposed at the beginning of the last century: 1). the venous origin of lymphatic vessels and 2). the de novo formation of primary lymph sacs in the mesenchyme (4, 5). Lymphangiogenesis has traditionally been overshadowed by greater emphasis placed on the blood vascular system (angiogenesis).

However during the last few years significant insight into the molecular mechanisms underlying the development of lymphatic vessels and the role of lymphangiogenesis in health and disease has been provided (6). Due to the discovery of the key lymphatic growth factors (vascular endothelial growth factor-C (VEGF-C) and -D (VEGF-D) and their corresponding receptor VEGFR-3, (7-9) and more recently due to the identification of several specific molecular markers (10-17) to distinguish blood from the lymphatic endothelium, new research frontiers, extending the tumor angiogenesis field to studies of tumor lymphangiogenesis, have been opened.

This review was written to provide insights into the mechanisms of lymphangiogenesis and lymph node metastasis, with a special attention to the role of inflammation in lymphangiogenesis and metastasis.

Lymphatic Endothelial Cells

Due to the lack of specific marker molecules, the lymphatic endothelial cell (EC) system has received much less attention, and the molecular mechanisms regulating lymphatic EC (LECs) and vessel function have remained...
largely elusive. Lymphatic vessels could only be visualized by lymphangiography, a method based on the ability of lymphatic vessels to take up dyes (Patent blue, trypan blue, evans blue or fluorescently-labelled tracer) and high-molecular weight molecules. Attributes, such as the lack of basement membrane components, i.e. laminin, collagen IV and collagen XVIII, the lack of PAL-E staining of CD31-positive endothelial cells, and 5’-nucleotidase activity had been considered to be characteristic for lymphatic endothelium (18).

Vascular endothelial growth factor receptor-3 (VEGFR-3) was the first LEC-specific cell surface molecule to be characterized (15). Three years later a new study by Jussila et al. demonstrated VEGFR-3 also to be widely expressed in embryonic blood endothelial cells (BECs) and to be re-expressed in tumor BECs (16). Thus, antibodies against VEGFR-3 are not considered as specific for lymphatic endothelium today. However, during the last few years various molecules, partially with known function, have been identified (Table I). Finally these new molecules provided the opportunity to purify LECs to homogeneity from the skin microvasculature, using immunomagnetic or FACS-based isolation, based on LEC surface markers, such as podoplanin and LYVE-1, thus enabling more detailed studies of LECs (19, 20). Recently published gene-expression profiles of BECs and LECs enable a closer view of the endothelial cell surface (19) (Table II).

To overcome the ephemeral nature of primary human microvascular endothelial cell-survival in culture, demonstrated by senescence during progressive replication, changes in function, loss of specific antigens, and change of morphology, which all substantially hamper the reproducibility of experiments and progress in many fields of investigation, immortalized, human ECs expressing the human telomerase reverse transcriptase gene have been established. These immortalized BECs and LECs proved to be stable and functionally-specialized cell lineages expressing pan-endothelial and cell-type-specific markers, and are thus excellent candidates for long-term culture studies on lymphatic blood microvascular-related diseases (20).

Lymphatic Endothelial Growth Factors

The discovery of the vascular endothelial growth factor (VEGF) family commenced with the identification of VEGF (21). The VEGF family comprises several secreted
glycoproteins, consisting of VEGFs-A, -B, -C, and -D as well as the placental growth factor (PIGF). There are three tyrosine kinase receptors through which VEGF signalling in endothelial cells occurs, identified so far as: VEGFR-1 (Flt-1), VEGFR-2 (Flk-1, KDR) and VEGFR-3 (Flt4). VEGFR-1 binds to VEGFs-A and -B and PIGF, VEGFR-2 binds to VEGFs-A, -C and -D, whereas VEGFR-3 binds only VEGFs-C and -D. In adult tissue VEGFRs-1 and -2 are predominantly expressed by blood endothelial cells and signal to promote cell proliferation, migration, and angiogenesis. However VEGFR-2 has been detected on lymphatic endothelium in vivo and in vitro, yet its role in lymphangiogenesis remains less clear (20, 22). VEGFR-3, which is widely expressed in early embryonic vasculature, becomes restricted to lymphatic endothelium in the later stage of embryogenesis and in adults is also expressed in some blood vessels (16, 23).

In adults VEGF-C is expressed in the heart, small intestine, placenta, ovary and thyroid gland. VEGF-D is structurally 48% identical to VEGF-C and is expressed in many adult tissues including the vascular endothelium, heart, skeletal muscle, lung, small and large bowel. Both VEGF-C and VEGF-D are secreted as homodimers that undergo extensive proteolytic processing of their N- and C-terminal domains following secretion (9, 24). Processing of VEGFs-C and -D alters their receptor binding affinities, thereby modulating the biological effects of these growth factors. The secreted 31-kDa form of VEGF-C/-D predominantly activates VEGFR-3, whereas the mature, fully processed 21kDa form activates both VEDGFRs-2 and -3.

VEGF-C stimulates mitosis and migration of endothelial cells and increases vascular permeability. The dual capacity of VEGF-C and -D to induce lymphangiogenesis and angiogenesis has been demonstrated in a variety of experimental systems, including chick chorioallantoic membrane, the rabbit cornea assay and transgenic mice (25-27). Recombinant VEGF-C protein when applied to differentiated avian chorioallantoic membrane or mouse cornea as well as the application of tumor cells onto avian chorioallantoic membrane, leads to lymphatic endothelial cell proliferation and formation of new formed lymphatic capillaries. Viral gene delivery of fully processed VEGF-D in rat skin, and local transfer of naked plasmid DNA encoding VEGF-C into an animal model of secondary lymphedema promoted selective proliferation of functional lymphatics (28, 29).

In EC co-cultures, VEGF-C secreted by BECs, acts as a growth and survival factor for LECs (30). Therefore in vivo, VEGF-C secreted by BECs can, indeed, be involved in lymphangiogenesis in the vicinity of blood vessels. VEGF-C156S, a VEGFR-3-specific form of VEGF-C, was shown to support the growth of LECs, but not of BECs, presumably owing the lack of expression of VEGFR-3 on BECs (20).

Lympangiogenesis in Tumors

Data from clinicopathological studies suggest that the spread of cancer cells to regional lymph nodes is an early event for many solid tumors, and that lymphatic vessels serve as the primary route for this spread (31).
Tumor-induced lymphangiogenesis has traditionally been overshadowed by the greater emphasis placed on the blood vascular system (angiogenesis). This has been mostly due to the popular belief that lymphatic vessels were not recruited within tumor tissue, and to the lack of suitable markers that distinguish blood- from lymphatic vascular endothelium. This scenario changed rapidly after the identification of the first lymphangiogenic factor, vascular endothelial growth factor (VEGF)-C (9, 32).

Many human tumors express VEGF-C, and increased VEGF-C expression correlates with lymph node metastasis in, for example, thyroid, gastric, colorectal and lung cancer (33, 34). In breast cancer, VEGF-C expression correlated with the lymph node status, whereas VEGF-D showed expression predominantly in inflammatory breast carcinoma (35).

The mechanisms regulating VEGF-C and VEGF-D expression in tumors are not fully understood. Although VEGF-C is commonly expressed in cancer, it is not known to what extent tumor cells are directly responsible for the secretion of lymphangiogenic factors, such as VEGF-C and VEGF-D (36).

As in angiogenesis, factors such as hypoxia, other growth factors, cytokines and hormones have been studied to find out what makes tumors secrete these lymphangiogenic factors. The regulation by other growth factors and cytokines seems to be especially promising, as it has been recently found that VEGF-C and VEGF-D could be regulated by interleukin-1beta and interleukin-7 (IL-7), respectively (37, 38).

IL-7 has been particularly identified as a strong lymphangiogenic factor in endothelial cells, increasing the expression of lymphatic markers and inducing the formation of lymphatic vessels in vivo (37). In addition, hepatocyte growth factor (HGF) has been recently identified as a putative lymphangiogenic factor in breast cancer (39).

The discovery of lymphangiogenic factors has, however, raised the question as to whether they are expressed in human cancers, and, if so, whether this contributes to the ability of tumors to metastasize. A great number of studies has investigated the relationship between levels of VEGF-C and/or VEGF-D expression of tumors or tumor-associated structures and clinicopathological features related to the ability of tumors to spread (i.e. lymphatic vessel invasion, lymphatic vessel density, lymph node involvement, overall, and disease free survival) (Table III).

The establishment of specific lymphatic markers allowed the unambiguous characterization of tumor lymphatics and the assessment of lymphangiogenesis during tumor progression. In many recent studies correlations were found between lymphatic markers and lymph-node metastases (see Table IV). In most tumors, lymphatic vessels are found juxtatumorally, whereas intratumoral lymphatic vessels were only observed in head and neck cancer and melanoma (40, 41).

With respect to lymphatic microvessel density (LMVD), a correlation exists between the number of tumor-associated lymphatics and the presence of lymph node metastases for a given tumor type (see Table IV).

Table III. Relationship between VEGF-C levels in primary human tumors and lymph node metastases.

<table>
<thead>
<tr>
<th>Tumor type</th>
<th>VEGF-C/Metastases</th>
<th>Comment</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid CA</td>
<td>LNM</td>
<td>IHC, RT-PCR</td>
<td>Tanaka et al. (53)</td>
</tr>
<tr>
<td>Oesophageal CA</td>
<td>LNM, LVI</td>
<td>IHC, MVD †</td>
<td>Kitadai et al. (54)</td>
</tr>
<tr>
<td>Gastric CA</td>
<td>LNM, LVI</td>
<td>IHC, WB, DFS(5y) ‡</td>
<td>Ishikawa et al. (55), Ichikura et al. (56), Yonemura et al. (57)</td>
</tr>
<tr>
<td>Breast CA</td>
<td>LNM, LVI</td>
<td>Inflammation</td>
<td>Schoppmann et al. (58), Kinoshita et al. (59), Kurebayashi et al. (35), Schoppmann et al. (60)</td>
</tr>
<tr>
<td>SCC</td>
<td>LNM</td>
<td>Intrat. Ly, RT-PCR, WB</td>
<td>O-Charoenrat et al. (61), Schoppmann et al. (48), Beasley et al. (40), Schoppmann et al. (46)</td>
</tr>
<tr>
<td>Pancreatic CA</td>
<td>LVI, LM</td>
<td>IHC, DFS no corr.</td>
<td>Tang et al. (62)</td>
</tr>
<tr>
<td>Gallbladder CA</td>
<td>LNM, LVI</td>
<td>DFS(5y) ‡</td>
<td>Nakashima et al. (63)</td>
</tr>
<tr>
<td>Colorectal CA</td>
<td>LNM, LVI, liver</td>
<td>DFS(5y) ‡, MVD †</td>
<td>Kaio et al. (64), George et al. (65), Furudoi et al. (66)</td>
</tr>
</tbody>
</table>

Lymph node metastases (LNM), lymphatic vessel invasion (LVI), immunohistochemistry (IHC), Western blot analysis (WB), real-time polymerase chain reaction (rt-PCR) disease free survival (DFS), microvessel density (MVD).
facilitated. Although pre-existing peritumoral lymphatics are likely to be sufficient for tumor spread, recruitment of lymphatic vessels (lymphangiogenesis) into the close proximity of the tumor may increase the propensity of a tumor to metastasize through an “increased lymphatic window”.

Inflammation and Lymphangiogenesis

The concept of a functional relationship between inflammation and cancer is not new. In the middle of the nineteenth century, Virchow was the first to suppose the origin of cancer at sites of chronic inflammation, based on the hypothesis that some classes of irritants, together with tissue injury and consequent inflammation, enhance cell proliferation. Although it is now clear that proliferation of cells alone does not cause cancer, sustained cell proliferation in an environment rich in inflammatory cells, growth factors, activated stroma, and DNA-damage-promoting agents, certainly potentiates and promotes neoplastic risk.

There is increasing evidence that inflammatory cells have an important role in pathological lymphangiogenesis (42, 43). Tumor cells produce various cytokines and chemokines that attract diverse leucocyte populations: neutrophils, dendritic cells, macrophages, eosinophils and mast cells, as well as lymphocytes are capable of producing an assorted number of cytokines, cytotoxic mediators, including reactive oxygen species, serine and cystein proteases, MMPs and membrane-perforating agents, and soluble mediators of cell killing, such as TNFα, interleukins and interferons (44). Activated leukocytes were shown to secrete several cytokines and other regulatory proteins such as VEGF, whereas the expression of VEGF is induced by hypoxia, which has an important role in tumor angiogenesis, and by pro-inflammatory cytokines (45). Tumor-associated macrophages (TAMs) are a significant component of inflammatory infiltrates in neoplastic tissues and are derived from monocytes that are recruited largely by monocytes, chemotactic chemokines and cytokines. Macrophages secrete a number of angiogenic and lymphangiogenic factors, including VEGF-C and VEGF-D (46-48). VEGF-C is also chemotactic for macrophages, and its receptor VEGFR-3 is expressed by a subfraction of peripheral blood monocytes and activated macrophages (46, 49) (Figure 1). Therefore, macrophages play a dual role in neoplasm. On the one hand they might have anti-tumor potency by killing neoplastic cells following the activation by IL-2, interferon and IL-12, and on the other hand TAMs produce a number of potent angiogenic and lymphangiogenic growth factors and cytokines, all of which are mediators that potentiate neoplastic progression (46, 50).

Thus, in addition to the tumor as a possible source of lymphangiogenic factors, the peritumoral tissue is also of interest for researchers.

Discussion

Recent studies have demonstrated that tumor lymphangiogenesis does occur in various human cancers, and that tumor-associated lymphatics are necessary for lymph node metastasis. VEGF-C has convincingly been demonstrated to be the key mediator in lymphogenous metastasis. VEGF-C alters the function of pre-existing lymphatics, mediates lymphangiogenesis, and is involved in tumor cell chemotaxis, lymphatic extravasation and dissemination.

Understanding the molecular and cellular mechanisms of metastasis is essential for the development of new forms of cancer therapy. In preclinical studies, molecules that have been shown to be effective in inhibiting tumor lymphangiogenesis and lymph node metastasis include a soluble VEGFR-3-IgG fusion protein and neutralizing anti-VEGF-D antibodies. Furthermore, indolinones that differentially block VEGF-C- and -D-induced VEGFR-3 kinase activity have been synthesized and characterized (51).
A recent work demonstrated the restoration of lymphatic function by VEGF-C in skin flaps, providing new tools to promote vascular perfusion and to reduce tissue oedema in skin and muscle flaps. These results could have important implications for the prevention and treatment of surgically-induced secondary lymphedema (52).

These tools provide a glimpse of what could potentially be a novel therapeutic opportunity for preventing or halting tumor cell dissemination and the formation of metastasis.

Acknowledgements

Thanks to Michaela Zirg for her support

References

64 Kaio E, Tanaka S, Kitadai Y, Sumii M, Yoshihara M, Haruma K and Chayama K: Clinical significance of angiogenic factor...
Please type or print the requested information on the reprint order form and return it to the Editorial Office by fax or e-mail.

Reprints must be paid for in advance.

If your paper is subject to charges for excess pages or color plates, please add these charges to the payment for reprints.

The reprints are not to be sold.

PRICE LIST FOR REPRINTS WITHOUT COVER

<table>
<thead>
<tr>
<th>Page length</th>
<th>Number of copies requested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>1-4pp EURO</td>
<td>335</td>
</tr>
<tr>
<td>5-8</td>
<td>438</td>
</tr>
<tr>
<td>9-12</td>
<td>554</td>
</tr>
<tr>
<td>13-16</td>
<td>709</td>
</tr>
<tr>
<td>17-20</td>
<td>838</td>
</tr>
</tbody>
</table>

For reprints with cover: Please add EURO 140.00 per 100 copies.

Postage: Please add 4% on the above prices.

Reprint Order Form

Of my paper No. 6173-S comprising 9 printed pages, entitled «Lymphangiogenesis, Inflammation and Metastasis»

accepted for publication in ANTICANCER RESEARCH Vol. 25 No. 6

☐ I require a total of ______ copies at EURO ______

☐ I do not require reprints

☐ Please send me a copy of this issue containing my paper at EURO 45.00

☐ Please enter my personal subscription to ANTICANCER RESEARCH at the special Author’s price of EURO 400.00 (☐ Year: 2005)

☐ A check for the above amounts payable to J. G. Delinassios, Executive Publisher of Anticancer Research Journal, is enclosed.

☐ Please send an invoice to:

For EC countries: Please give your VAT number:

City and Date: ________________________________ Signature: ________________________________

Exact postal address: ________________________________

Tel: ________________________________

Fax: ________________________________
Dr. S.F. Schoppmann

Re: Your manuscript No. 6173-S entitled «Lymphangiogenesis, Inflammation and Metastasis»

Dear Dr,

Referring to your above manuscript for publication in AHR, please allow us to use this form letter in reply:

1. Referee’s recommendations:
 ■ Urgent to be published immediately.
 □ Accepted in the presented form.
 □ Accepted with minor changes.
 ■ Accepted with grammatical or language corrections.
 □ Remarks:

2. Excess page charges.
 □ Your article has approx. xxx printed pages and is in excess of the allotted number by approx. xx printed pages. The charges are EURO € xxxx per excess page, totalling EURO € xxxx
 We ask you to confirm acceptance of these charges.
 □ Your article includes xxx pages with color figures. The charges are EURO € xxx per color page, totalling EURO € xxxx
 □ Our invoice is sent by air mail to the corresponding author.

3. Your article will appear in Volume 25, Issue No. 6, 2005

4. Please order your reprints now. This will facilitate our prompt planning of future issues and rapid publication of your article. Reprints will be delivered by air mail within one month from publication.

We would appreciate your prompt reply.
With many thanks,
Yours sincerely,

J.G. Delinassios
Managing Editor

EDITORIAL OFFICE: INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH
1st km Kapandritiou - Kalamou Rd., Kapandriti, P.O.B. 22, Attiki 19014, Greece. Tel.: 0030-22950-52945;
Tel & Fax:0030-22950-53389; e-mail: journals@iiar-anticancer.org